A CHARACTERIZATION OF THE FINITE PROJECTIVE SYMPLECTIC GROUPS $PSp_4(q)$

BY W. J. WONG(1)

In this paper we present a characterization of the projective symplectic groups $PSp_4(q)$ in dimension 4 over finite fields of odd characteristic, in terms of the structure of the centralizer of an involution. The group $PSp_4(q)$ is simple, of order $\frac{1}{2}q^4(q^2+1)(q^2-1)^2$, with a Sylow 2-subgroup whose center has order 2, so that involutions which lie in the centers of Sylow 2-subgroups form a single conjugacy class (see §1). We shall prove the following result.

THEOREM. Let C be the centralizer in $PSp_4(q)$ of an involution lying in the center of some Sylow 2-subgroup, where q is odd. Let G be a finite group containing an involution t whose centralizer C(t) in G is isomorphic with C. Then either

- (i) G = C(t)O(G), or
- (ii) G is isomorphic with $PSp_4(q)$.

Here O(G) denotes the largest normal subgroup of odd order in G. In particular, $PSp_4(q)$ is the only simple group satisfying the hypothesis of the theorem.

A similar characterization of $PSp_4(q)$ in the case of even q has been given by Suzuki [13]. A special case of our theorem has been obtained by Janko, who dealt with the case q=3 [10].

We use a method which appears to be rapidly becoming standard (e.g., [11], [12], [13]). This is the construction of a (BN)-pair for G [16]. In our case, after discarding the case (i) of the theorem, we show that G has a subgroup G_0 with a (BN)-pair having as Weyl group the dihedral group of order 8. This in itself is not sufficient to identify G_0 , but we can prove that the multiplication table of G_0 is uniquely determined, from which it follows that G_0 is isomorphic with $PSp_4(q)$. By using a lemma of Suzuki we prove that $G_0 = G$. Our techniques are similar to those of Janko and Phan [10], [11]. We do not use directly the theory of group characters, but we do use a result of Gorenstein and Walter which requires the character theory [7].

The paper is organized as follows. In $\S 1$ we determine the structure of the group C. Next we show in $\S 2$ that if case (i) of the conclusion of the theorem does not hold then G has exactly two classes of involutions. In $\S 3$ we determine the structure of the centralizer of an involution in the second class. By studying the centralizers

Received by the editors September 4, 1967.

⁽¹⁾ Research partially supported by National Science Foundation grant GP-6652 at the University of Notre Dame.

and normalizers of various p-subgroups (p the prime divisor of q), we find the structure of the normalizer of a Sylow p-subgroup in §4. In §5 we put together the (BN)-pair and finish the proof as outlined above.

Our notation is largely standard. We use O(X) to denote the largest normal subgroup of odd order in the finite group X. $N_X(Y)$ and $C_X(Y)$ are the normalizer and centralizer of Y in X; we omit the subscript when X = G. We write $[x, y] = x^{-1}x^y = x^{-1}y^{-1}xy$. If $x^y = z$, we also write $y: x \to z$. If $y: x \to x^{-1}$, we say that y inverts x. The field of q elements is denoted F_q . When we speak of the norm of an element of F_{q^2} , we shall always mean the norm from F_{q^2} to F_q . Finally, we shall take linear transformations on a vector space as acting on the right.

1. The group C. Let q be a power of an odd prime number p. We define the integer δ by the conditions

(1)
$$q \equiv \delta \pmod{4}, \quad \delta = \pm 1.$$

Let 2^n be the greatest power of 2 dividing $q - \delta$, so that

$$(2) q - \delta = 2^n e, \quad e \text{ odd.}$$

We fix a generator ε of the multiplicative group of F_q . Setting

$$J = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix},$$

we may take $PSp_4(q)$ as the group of all matrices A of degree 4 with coefficients in F_q such that A'JA=J, where A' denotes the transpose of A and we identify two such matrices if they are negatives of each other. Let C be the centralizer in $PSp_4(q)$ of the involution

$$t = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix},$$

where I is the identity matrix of degree 2. It is easily verified that C consists of all elements of the form

$$\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix},$$

where $A, B \in SL_2(q)$. Setting

$$L_{1} = \left\{ \begin{bmatrix} A & 0 \\ 0 & I \end{bmatrix} \middle| A \in \operatorname{SL}_{2}(q) \right\}, \qquad L_{2} = \left\{ \begin{bmatrix} I & 0 \\ 0 & B \end{bmatrix} \middle| B \in \operatorname{SL}_{2}(q) \right\},$$

$$u = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix},$$

we see that L_1 and L_2 are isomorphic with $SL_2(q)$, elements of L_1 commute with elements of L_2 , $L_1 \cap L_2 = \langle t \rangle$, $C = L_1 L_2 \langle u \rangle$, $u^2 = 1$, $L_1^u = L_2$. Since $SL_2(q)$ has center of order 2 it follows easily that C has center $\langle t \rangle$.

Since C has order

$$|C| = |SL_2(q)|^2 = q^2(q^2-1)^2$$

the index of C in $PSp_4(q)$ is $\frac{1}{2}q^2(q^2+1)$, an odd number. Thus a Sylow 2-subgroup S of C is also a Sylow 2-subgroup of G, and t lies in the center of S. We can take $S = S_1 S_2 \langle u \rangle$, where S_1 is a Sylow 2-subgroup of L_1 , $S_2 = S_1^u$. We construct the S_i as follows. Let

(3)
$$d = \begin{bmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{-1} \end{bmatrix} (\delta = 1), \text{ or } d = \begin{bmatrix} \alpha & \beta \\ \varepsilon \beta & \alpha \end{bmatrix} (\delta = -1),$$

where in the second case α and β are elements of F_q such that $\alpha + \beta \sqrt{\varepsilon}$ is a generator of the group of elements of norm 1 in F_{q^2} . Then d is an element of order $q - \delta$ in $SL_2(q)$, generating a subgroup whose normalizer is $\langle d, b \rangle$, where

(4)
$$b = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} (\delta = 1), \text{ or } b = \begin{bmatrix} \lambda & \mu \\ -\varepsilon\mu & -\lambda \end{bmatrix} (\delta = -1),$$

where in the second case λ and μ are elements of F_q such that $\lambda^2 - \varepsilon \mu^2 = -1$. Then b inverts d and $b^2 = -I$. If we put

$$(5) a = d^e,$$

then $\langle a, b \rangle$ is a Sylow 2-subgroup of $SL_2(q)$, a generalized quaternion group of order 2^{n+1} . If a and b are transformed into a_1 and b_1 by an isomorphism of $SL_2(q)$ with L_1 , and u transforms a_1 and b_1 into a_2 and b_2 , then we may take $S_i = \langle a_i, b_i \rangle$, so that we have

(6)
$$S = \langle a_1, b_1, a_2, b_2, u \rangle,$$

$$a_i^{2^{n-1}} = b_i^2 = t, \quad a_i b_i = b_i a_i^{-1},$$

$$[a_1, a_2] = [a_1, b_2] = [b_1, a_2] = [b_1, b_2] = 1,$$

$$a_1^u = a_2, \quad b_1^u = b_2.$$

The order of S is 2^{2n+2} . Since a generalized quaternion group has center of order 2, it follows easily that S has center $\langle t \rangle$. Thus the involutions lying in the centers of Sylow 2-subgroups form a single conjugacy class and their centralizers are all isomorphic.

Every involution of L_1L_2 different from t is of the form xy, where x and y are elements of order 4 in L_1 and L_2 respectively. Since all elements of order 4 in $SL_2(q)$ are conjugate, we see that all involutions of L_1L_2 different from t are conjugate in L_1L_2 .

If x and y are elements of L_1 and L_2 respectively, then

$$(uxy)^2 = (y^u x)(x^u y),$$

and $y^u x \in L_1$, $x^u y \in L_2$. Hence, if uxy is an involution then $y^u x \in L_1 \cap L_2 = \langle t \rangle$, so that $uxy = y^u ux = x^{-1}ux$ or $x^{-1}tux$.

We summarize all the properties of C which we have found in the following lemma.

LEMMA 1.1. (i) $|C| = q^2(q^2-1)^2$.

(ii) $C = L_1 L_2 \langle u \rangle$, where L_1 and L_2 are subgroups of C, such that

$$L_1 \cap L_2 = \langle t \rangle, \qquad [L_1, L_2] = \{1\},$$

u is an involution, and there are isomorphisms

$$x \to x_1, \qquad x \to x_2,$$

of $SL_2(q)$ on L_1 and L_2 respectively, such that

$$x_1^u = x_2,$$

for all x in $SL_2(q)$.

(iii) If d, b and a are the elements of $SL_2(q)$ given by (3), (4) and (5), then

$$S = \langle a_1, b_1, a_2, b_2, u \rangle$$

is a Sylow 2-subgroup of C, of order 2^{2n+2} , with the generators of S satisfying the relations (6).

- (iv) $Z(C) = Z(S) = \langle t \rangle$.
- (v) All involutions of $L_1L_2-\langle t\rangle$ are conjugate in C. All involutions of $C-L_1L_2$ are conjugate in C to u or tu.

If x is an element of $SL_2(q)$, we shall always let x_1 and x_2 be the elements of L_1 and L_2 obtained from x by applying the isomorphisms of (ii) above.

2. Classes of involutions in G. From now on we assume that G is a finite group satisfying the hypothesis of the theorem. In the isomorphism of C(t) with C, the image of t must be the unique nontrivial element of Z(C). Thus we may take C(t) = C, where C has the properties of Lemma 1.1.

LEMMA 2.1. S is a Sylow 2-subgroup of G.

Proof. Let T be a Sylow 2-subgroup of G containing S. Then Z(T) centralizes t, so that

$$Z(T) \leq C(t) \cap T = S$$
,

whence $Z(T) \le Z(S)$, so that $Z(T) = \langle t \rangle$, by Lemma 1.1 (iv). Hence $T \le C(t)$, so that T = S. This proves the lemma.

Two of the involutions of $L_1L_2-\langle t\rangle$ are

(7)
$$v = (a_1 a_2)^{2^{n-2}}, \quad w = b_1 b_2.$$

LEMMA 2.2. The involutions of $L_1L_2-\langle t \rangle$ are not conjugate in G to t.

Proof. By Lemma 1.1 (v), it is enough to show that v is not conjugate in G to t. The centralizer of v in C(t) is

(8)
$$C(t,v) = \langle u, d_1, d_2, w \rangle,$$

a group of order $2(q-\delta)^2$. We have

(9)
$$d_1^u = d_2, \quad d_i^w = d_i^{-1}, \quad [u, w] = 1.$$

A Sylow 2-subgroup of C(t, v) is $T = \langle u, a_1, a_2, w \rangle$, a group of order 2^{2n+1} . We compute that $Z(T) = \langle t, v \rangle$.

Suppose first that n > 2. We can calculate that each of the involutions v, tv of Z(T) is a power of exactly $2^{2n-1} - 2^n + \frac{1}{3}(2^{2n-2} - 1)$ elements of T, while t is a power of only $2^{2n-1} - 2^{2n-2} + \frac{1}{3}(2^{2n-2} - 1)$ elements of T. It follows that $\langle t \rangle$ is a characteristic subgroup of T. If v were conjugate in v to v to v would contain a Sylow 2-subgroup v of v containing v containing v to v would be normal in v so that v would be normal in v. Then v would contain v and v contradicting the fact that v has order 2 and v is isomorphic with v.

Now suppose that n=2, so that |T|=32. We repeat an argument of Janko [10]. T has an elementary Abelian maximal subgroup

$$E = \langle t, u, v, w \rangle$$
.

Since $C(E) \le C(t)$, we can compute C(E). We find that C(E) = E. Hence

$$X = N(E)/E$$

is isomorphic with a subgroup of the automorphism group of E, which is isomorphic with GL_4 (2), i.e. with the alternating group A_8 .

Since |Z(T)| = 4, E is the only Abelian maximal subgroup of T, for otherwise the intersection of two such subgroups would be a subgroup of order 8 in Z(T). Hence $N(T) \le N(E)$. Suppose that v is conjugate to t in G. Then, as before, a Sylow 2-subgroup V of C(v) containing T is a Sylow 2-subgroup of G, and $V \ne S$ since $S \le C(v)$. Since V and S normalize T, they are contained in N(E). The fourgroups V/E and S/E are Sylow 2-subgroups of X containing $T/E = \langle a_1 E \rangle$. Thus the centralizer in X of the involution a_1E has more than one Sylow 2-subgroup. Since involutions of A_8 have centralizers of order 2^63 or 2^53 [17, p. 360], we see that $C_X(a_1E)$ is dihedral of order 12.

Since n=2, $SL_2(q)$ contains an element f of order 3 normalizing the Sylow 2-subgroup $\langle a,b\rangle$ of $SL_2(q)$, and permuting the subgroups $\langle a\rangle$, $\langle b\rangle$ and $\langle ab\rangle$ cyclically (since $PSL_2(q)$ has subgroups isomorphic with A_4 [4, p. 268]). Then f_1f_2 normalizes $\langle a_1a_2, b_1b_2\rangle = \langle v, w\rangle$. Also, f_1f_2 centralizes $\langle t, u\rangle$. Hence $f_1f_2 \in N(E)$,

and f_1f_2E permutes the involutions a_1E , b_1E , a_1b_1E of S/E cyclically. Hence $\langle a_1E, b_1E, f_1f_2E \rangle$ is isomorphic with A_4 , and all involutions of X are conjugate. Since A_4 has no normal subgroup of order 3, f_1f_2E is not contained in O(X), so that |X:O(X)| is divisible by 3. Since 3^3 does not divide $|A_8|$, |O(X)| is not divisible by 3^2 . Hence O(X) has a normal 3-complement W, by Burnside's theorem. If $C_X(a_1E) \cap O(X) \neq \{1\}$, then we must have

$$O(X) = (C_X(a_1E) \cap O(X))W.$$

Then a_1E centralizes the chief factor O(X)/W of X. Hence the conjugate b_1E of a_1E should also centralize O(X)/W. But, b_1E inverts $C_X(a_1E) \cap O(X)$, so that we have a contradiction. Thus,

$$C_X(a_1E)\cap O(X)=\{1\}.$$

Now a theorem of Gorenstein and Walter [7, Theorem I] shows that X/O(X) is isomorphic with PSL_2 (11) or PSL_2 (13). This contradicts the fact that $|A_8|$ is not divisible by 11 or 13. Hence v is not conjugate in G to t. This completes the proof of the lemma.

We now assume that case (i) of the conclusion of our theorem does not hold, i.e. that

$$(10) G \neq C(t)O(G).$$

LEMMA 2.3. Either u or tu is conjugate in G to t.

Proof. If this were not so, then t would be conjugate in G to no other involution of S, by Lemma 1.1 (v). By a theorem of Glauberman [6, Theorem 1], tO(G) lies in the center of G/O(G), i.e.

$$C_{G/O(G)}(tO(G)) = G/O(G).$$

Since $C_{G/O(G)}(tO(G)) = C_G(t)O(G)/O(G)$, we find that G = C(t)O(G), contradicting the assumption (10). This proves the lemma.

From the description of C given in Lemma 1.1 (ii) we see that C has an automorphism interchanging the involutions u and tu. Thus we may assume that

(11)
$$tu$$
 is conjugate in G to t .

Lemma 2.4. G has exactly two conjugacy classes of involutions, K_1 and K_2 , such that $K_1 \cap C$ consists of the classes in C represented by t and tu, and $K_2 \cap C$ consists of the classes in C represented by v and u. There exists an element z of G such that z^2 lies in S and

$$(12) z: t \to uv, u \to tv, v \to v.$$

Proof. Let K_1 be the conjugacy class of t in G and K_2 the conjugacy class of v in G. By Lemma 2.2, $K_1 \neq K_2$. We set

$$E = C_s(tu) = \langle a_1 a_2, w \rangle \times \langle t, u \rangle.$$

The subgroup $\langle a_1 a_2, w \rangle$ is dihedral of order 2^n , so that $|E| = 2^{n+2}$. Let T be a Sylow 2-subgroup of C(tu) containing E. Since tu is conjugate in G to t, $|T| = 2^{2n+2}$ > |E|. Hence there exists an element z of T - E such that $z^2 \in E$ and z normalizes E.

$$t^z = uv, \qquad (uv)^z = t.$$

Hence $(tuv)^z = uvt = tuv$. Since $(tu)^z = tu$, we have $v^z = v$. Then $u^z = (uvv)^z = tv$, and we have proved (12).

Now suppose that n=2. Then $E=\langle t, u, v, w \rangle$. The intersections of E with the conjugacy classes of involutions of C are

$$J_1 = \{t\},$$
 $J_3 = \{v, w, vw, tv, tw, tvw\},$
 $J_2 = \{tu, uv, uw, uvw\},$ $J_4 = \{u, tuv, tuw, tuvw\}.$

We know that J_1 and J_2 lie in K_1 and J_3 lies in K_2 . If J_3 were invariant under z, then the product of the elements of J_3 , which is t, would also be invariant under z, a contradiction. Hence one of the involutions in J_3 is conjugate to one of the involutions of J_4 , and we have the first statement of the lemma. In particular,

$$K_1 \cap E = \{t, tu, uv, uw, uvw\}.$$

In the proof of Lemma 2.2, we saw that a Sylow 2-subgroup of N(E)/E is contained in a subgroup isomorphic with A_4 . Thus the involution zE of N(E)/E is contained in such a subgroup F of N(E)/E. Then F acts on the set $K_1 \cap E$, the action being faithful since zE moves t. Now A_4 has only one faithful permutation representation of degree 5, the obvious one. In this representation, a letter fixed by one involution is fixed by all, and the involutions permute the remaining letters transitively. Since zE fixes tu, F contains an involution which fixes tu and transforms t into uv. We now replace z by an element of N(E) representing this involution, and the proof is finished as before.

We remark that in $PSp_4(q)$ one class of involutions consists of elements coming from involutions of $Sp_4(q)$, and the other class comes from the semi-involutions [5, p. 5].

If S^* is the focal group of S in G, i.e. the intersection of S with the derived group G' of G, then S^* contains the derived group of S,

$$S' = \langle a_1^2, a_1 a_2, w \rangle.$$

Since wa_1 is conjugate to w in C, S^* also contains wa_1 , and hence a_1 . Since b_1 is conjugate to a power of a_1 , S^* contains b_1 . Finally, tu is conjugate in G to the element t of S'. Thus we obtain $S^* = S$, so that G has no subgroup of index 2.

If q=3, our theorem now follows from the result of Janko [10]. Since a few of the arguments which we shall use do not work in the case q=3 but have to be replaced by special arguments (given by Janko), we shall henceforth assume that

$$(13) q > 3.$$

3. Centralizers of involutions in K_2 . We shall determine the structure of C(u). Let

(14)
$$A = \{x_1 x_2 \mid x \in SL_2(q)\}.$$

Then A is a subgroup of C(t) isomorphic with $\mathrm{PSL}_2(q)$, an isomorphism being provided by the mapping taking x_1x_2 on the element of $\mathrm{PSL}_2(q)$ represented by the matrix x. For convenience, we shall identify A with $\mathrm{PSL}_2(q)$ by means of this isomorphism. We have

$$(15) C(t, u) = \langle t, u \rangle \times A.$$

Also, by (8), we have $C(t, v) = \langle tu, d_1, d_2, w \rangle$. Transforming by the element z of Lemma 2.4, we find that

(16)
$$C(u,v) = \langle tu, d_1^z, d_2^z, w^z \rangle.$$

In order to use the information in (15) and (16) to determine C(u), we require more knowledge of the action of z.

LEMMA 3.1.
$$\langle d_1 d_2 \rangle^z = \langle d_1 d_2 \rangle$$
, $\langle a_1 a_2 \rangle^z = \langle a_1 a_2 \rangle$, and

(17)
$$w = (w(d_1d_2)^m t u)^z,$$

for some integer m.

Proof. We have

(18)
$$C(t, u, v) = \langle t, u \rangle \times C_A(v),$$

$$(19) C_A(v) = \langle d_1 d_2, w \rangle.$$

Here $C_A(v)$ is a dihedral group of order $q - \delta$. Since v is a central involution of $C_A(v)$, we may also write

$$C(t, u, v) = \langle tv, uv \rangle \times \langle d_1 d_2, w \rangle.$$

Since z normalizes $\langle t, u, v \rangle$, we may transform by z, and, using (12), obtain

(20)
$$C(t, u, v) = \langle t, u \rangle \times \langle (d_1 d_2)^z, w^z \rangle.$$

Calculation of the subgroup Y of C(t, u, v) generated by those elements which have as a power an involution in $\langle t, u, v \rangle$ (using (18), (19) and (20)) shows that

$$Y = \langle t, u \rangle \times \langle d_1 d_2 \rangle = \langle t, u \rangle \times \langle (d_1 d_2)^z \rangle.$$

Now put

$$g=a_2^{2^{n-2}}.$$

Then $g^2 = t$, and transformation by g interchanges tu and uv. By (12), we see that

$$(g^z)^2 = uv, \qquad g^z \colon t \leftrightarrow tu.$$

In particular, g^z normalizes $\langle t, u \rangle$ and so normalizes C(t, u). From (15), A is the derived group of C(t, u), so that g^z normalizes A. Also, g commutes with v and $v^z = v$, so that g^z commutes with v. Hence g^z normalizes $C_A(v)$.

Now, $[g^z, (d_1d_2)^z] = [g, d_1d_2]^z = 1$, so that $[g^z, Y] \le \langle t, u \rangle$. Since d_1d_2 lies in both Y and $C_A(v)$, we have

$$[g^z, d_1d_2] \leq \langle t, u \rangle \cap C_A(v) = \{1\},\$$

so that g^z commutes with d_1d_2 .

We also have [g, w] = t, so that, by (12), $[g^z, w^z] = uv$. Hence, if x is any element of $C(t, u, v) - Y = w^z Y$, then

$$[g^z, x] \in v \langle t, u \rangle$$
.

Since w is such an element, $w \in C_A(v)$, and $v \langle t, u \rangle \cap C_A(v) = \{v\}$, we have

$$[g^z, w] = v.$$

We now know the action of g^z on t, u, v, w, d_1d_2 , and their transforms by z. From (18), (19) and (20), we obtain

$$\langle u \rangle \times \langle d_1 d_2 \rangle = C(t, u, v, g^2) = \langle u \rangle \times \langle (d_1 d_2)^2 \rangle.$$

Suppose that $(d_1d_2)^z = u(d_1d_2)^m$ for some integer m. Then, taking eth powers, we have $(a_1a_2)^z = u(a_1a_2)^m$, so that, from (12),

$$(a_1a_2)^{z^2} = tvu^m(a_1a_2)^{m^2}.$$

Thus z^2 does not normalize $\langle a_1 a_2 \rangle$. This is a contradiction, since, by Lemma 2.4, z^2 lies in $C_s(t, u) = \langle t, u \rangle \times \langle a_1 a_2, w \rangle$, which has $\langle a_1 a_2 \rangle$ as a normal subgroup. It now follows from (22) that

$$\langle (d_1d_2)^z \rangle = \langle d_1d_2 \rangle.$$

Taking eth powers shows that $\langle (a_1 a_2)^z \rangle = \langle a_1 a_2 \rangle$.

Since w has the property (21), computation in the group C(t, u, v) shows that

(23)
$$w = w^{z}((d_{1}d_{2})^{z})^{m}tv$$
, or $w = w^{z}((d_{1}d_{2})^{z})^{m}tu$,

for some integer m. Now, $w^2((d_1d_2)^2)^m tv$ is conjugate to $w(d_1d_2)^m u = (b_1d_1)^{-m}(tu) \times (b_1d_1)^m$, which lies in K_1 , and w lies in K_2 . Hence the second alternative in (23) must hold. Since $(tu)^2 = tu$, we have the formula (17). This proves the lemma.

By (16), C(u, v) contains the subgroup $\langle tu, a_1^z, a_2^z \rangle$, of order 2^{2n} . Now, w centralizes tu, and by (17),

(24)
$$(a_1^z)^w = (a_2^z)^{-1}, \qquad (a_2^z)^w = (a_1^z)^{-1}.$$

Hence the element w of C(u, v) normalizes $\langle tu, a_1^z, a_2^z \rangle$, so that C(u, v) contains the subgroup

$$T = \langle tu, a_1^z, a_2^z, w \rangle$$

of order 2^{2n+1} . Since u does not lie in the center of a Sylow 2-subgroup of G, T must be a Sylow 2-subgroup of C(u).

LEMMA 3.2. C(u) has a normal subgroup K of index 2 with Sylow 2-subgroup

$$M = \langle a_1^z, a_2^z, w \rangle$$
.

Proof. Let T^* be the focal group of T in C(u), i.e. the intersection of T with the derived group of C(u). Then T^* contains the derived group of T,

$$T' = \langle a_1 a_2, a_1^2 \rangle^z$$
.

Also, since A is a subgroup of C(u) having no subgroup of index 2, T^* contains $A \cap T = \langle a_1 a_2, w \rangle$. Thus T^* contains the subgroup

$$W = \langle (a_1 a_2)^z, (a_1^z)^2, w \rangle.$$

This is a normal subgroup of T, and T/W is a four-group.

We shall use the following result of Thompson [15, Lemma 5.38], proved by a simple transfer argument.

Lemma 3.3. Let M be a maximal subgroup of a Sylow 2-subgroup of a finite group X. Then every involution of the derived group of X is conjugate in X to an element of M.

Here we take $M = \langle a_1^z, a_2^z, w \rangle$. Using the relations (24), we see that M has five classes of involutions, represented by

Since A contains only one class of involutions, v, w and vw are conjugate in C(u). Hence uv and uvw are conjugate in C(u). Thus the involutions of M lie in conjugacy classes of C(u) represented by u, v, uv. We have u, $v \in K_2$, $uv \in K_1$.

If tu were conjugate in C(u) to uv, then t=(tu)u would be conjugate to (uv)u=v, contradicting Lemma 2.2. Hence tu is conjugate in C(u) to no element of M, so that, by Lemma 3.3, T^* does not contain tu.

The element $tua_1^z w$ is an involution, conjugate in G to $tua_1 w (d_1 d_2)^m tu = a_2 w (d_1 d_2)^m$, by (17). Thus $tua_1^z w$ lies in K_2 . If $tua_1^z w$ were conjugate in C(u) to v, $ta_1^z w$ would be conjugate to uv. But $ta_1^z w$ is conjugate in G to $uva_1 w (d_1 d_2)^m tu = va_2 w (d_1 d_2)^m t$, which lies in K_2 by Lemmas 2.2 and 2.4, while uv lies in K_1 . Hence $tua_1^z w$ is not conjugate in C(u) to v. Obviously $tua_1^z w$ is not conjugate in C(u) to v. Hence $tua_1^z w$ is conjugate in C(u) to no element of M, so that, by Lemma 3.3, T^* does not contain $tua_1^z w$.

It now follows that we have two possibilities for T^* :

$$T^* = W$$
, or $T^* = \langle a_1^z, W \rangle = M$.

In either case, we have a subgroup of index 2 in C(u) having M as Sylow 2-subgroup. This proves Lemma 3.2.

LEMMA 3.4. K has a normal subgroup L of index 2ⁿ with Sylow 2-subgroup

$$J = \langle a_1 a_2, w \rangle$$
.

Proof. We find the focal subgroup M^* of M in K. From (24) and Lemma 3.1, the derived subgroup of M is

$$M' = \langle (a_1 a_2)^z \rangle = \langle a_1 a_2 \rangle.$$

Thus the subgroup $\langle v \rangle$ of order 2 in M' is characteristic in M, and we have

$$N_K(M) \leq C_K(v) \leq C(u, v).$$

From (16), C(u, v) has a normal 2-complement. Hence so has $N_K(M)$, so that $N_K(M)' \cap M = M'$. By Grün's first theorem [8, Theorem 14.4.4], M^* is the subgroup of M generated by those elements of M which are conjugate in K to elements of M'.

Since A has no subgroup of index 2, $A \le K$ and M^* contains $A \cap M = \langle a_1 a_2, w \rangle$, which we denote J. Suppose that $M^* > J$. Then there exists an element of M - J which is conjugate in K to an element of M', say

$$((a_1a_2)^j)^s = (a_1^z)^k x,$$

where $s \in K$, $x \in J$, $(a_1^z)^k \neq 1$. By taking a suitable power, we find that v^s lies in $\langle a_1^z \rangle J$, so that v^s lies in $\langle uv \rangle J$, since $\langle uv \rangle J/J$ is the unique subgroup of order 2 in $\langle a_1^z \rangle J/J$. Hence either

(26)
$$v^s = uvr \quad (r \in J), \qquad \text{or} \quad v^s \in J.$$

The second case can occur only when v is an even power of $(a_1a_2)^j$, since an odd power of $(a_1^z)^k$ does not lie in J. Thus $v = ((a_1a_2)^j)^{2i}$. Then, $((a_1^z)^kx)^i \in \langle uv \rangle J$. Now, $\langle a_1a_2 \rangle$ is a normal subgroup of $\langle uv \rangle J$, with elementary Abelian quotient group (of order 4). Hence, squaring, we find that

$$v^s \in \langle a_1 a_2 \rangle$$
,

so that $v^s = v$. Hence $s \in C(u, v)$. Since $\langle a_1 a_2 \rangle$ is a normal subgroup of C(u, v), we have a contradiction to (25).

If the first case holds in (26), then $(uv)^s = vr$. But vr is an involution in A, and so is conjugate to w, which lies in K_2 . This is a contradiction, since uv lies in K_1 . Hence $M^* = J$. This proves the lemma.

LEMMA 3.5. $L = A \times E$, where $E = \langle ((d_1d_2^{-1})^z)^{2^{n-1}} \rangle$, a cyclic group of order e.

Proof. Since $A \le K$, $|K:L| = 2^n$, and A has no subgroup of index 2, we must have $A \le L$. Since A contains a Sylow 2-subgroup of L, L has no subgroup of index 2. The Sylow 2-subgroup J of L is dihedral of order 2^n , and all involutions of L are conjugate in L. We have

$$C_L(v) \leq C(u, v),$$

which has an Abelian 2-complement, by (16). By a theorem of Gorenstein and Walter [7, Theorem I], L/O(L) is isomorphic with the alternating group A_7 , or with $PSL_2(r)$, for some odd r.

Since L/O(L) contains O(L)A/O(L), which is isomorphic with $PSL_2(q)$, it follows that either

$$L/O(L) \approx A_7$$
, $q = 7$ or 9, or $L/O(L) \approx PSL_2(r)$, and r is a power of q or $q = 5$,

by [4, p. 286] and the assumption that q > 3. We also have

$$C_{L/O(L)}(vO(L)) = C_L(v)O(L)/O(L),$$

so that $|C_{L/O(L)}(vO(L))|$ divides $|C_L(v)|$, which divides |C(u, v)|. This means that 24 divides $2(q-\delta)^2$ if $L/O(L) \approx A_7$, and $r \pm 1$ divides $2(q-\delta)^2$ if $L/O(L) \approx PSL_2(r)$. The only possibility is that $L/O(L) \approx PSL_2(r)$, r=q. Hence L=O(L)A.

Since every four-subgroup of $PSL_2(q)$ is selfcentralizing, $C_L(v, w)O(L)/O(L)$ has order 4, so that

$$O(C_t(v, w)) \leq O(L).$$

From (16), (17) and (24), we have

$$O(C_L(v, w)) = O(C(u, v, w)) = \langle ((d_1d_2^{-1})^z)^{2^{n-1}} \rangle.$$

Thus, $|O(L)| \ge e$.

From the structure of $PSL_2(q)$,

$$|C_{L/O(L)}(vO(L))| = q - \delta.$$

Now $C_L(v)$ has J as Sylow 2-subgroup and contains the normal 2-complement of C(u, v), which has order e^2 . Hence $|C_L(v)| = 2^n e^2 = (q - \delta)e$. It follows that

$$|C_{O(L)}(v)| = e.$$

Since w and vw are conjugate in L to v, we also have

$$|C_{O(I)}(w)| = |C_{O(I)}(vw)| = e.$$

We shall apply the following result of Brauer, and Gorenstein and Walter [1, p. 328]; [7, p. 555].

LEMMA 3.6. Let F be a four-group acting on a group K of odd order. Let t_1 , t_2 , t_3 be the three involutions of F. Then

$$|K| |C_K(F)|^2 = |C_K(t_1)| |C_K(t_2)| |C_K(t_3)|,$$

$$K = C_K(t_1)C_K(t_2)C_K(t_3).$$

It follows immediately that |O(L)| = e, so that $O(L) = \langle ((d_1 d_2^{-1})^2)^{2^{n-1}} \rangle$, which we denote E.

Now $C_L(E)$ is a normal subgroup of L containing E and the involution v. Since L/E is simple, we must have $C_L(E) = L$, so that $L = A \times E$. This proves Lemma 3.5.

LEMMA 3.7. The centralizer C(u) of u in G is a semidirect product

(27)
$$C(u) = \langle t, s \rangle (A \times E), \qquad \langle t, s \rangle \cap (A \times E) = \{1\},$$

where $A = PSL_2(q)$, E is cyclic of order e, and $\langle t, s \rangle$ is dihedral of order 2^{n+1} :

$$t^2 = s^{2^n} = 1, \quad s^t = s^{-1}.$$

Here u is the central involution of $\langle t, s \rangle$:

$$u = s^{2^{n-1}}$$

The involution t centralizes A and inverts E, and the element s centralizes E and induces the same automorphism on A as the element of $PGL_2(q)$ represented by the matrix

$$\begin{bmatrix} 0 & \varepsilon \\ -1 & 0 \end{bmatrix} (\delta = 1), \quad or \quad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} (\delta = -1).$$

Proof. By Lemmas 3.2, 3.4 and 3.5, $C(u) = \langle tu, a_1^z, A \times E \rangle$. We put

$$(28) s = a_1^z w (d_1 d_2)^k,$$

where k is an integer, to be specified later. Since $w(d_1d_2)^k$ lies in A, we have $C(u) = \langle tu, s, A \times E \rangle$. Using (9), (24) and Lemma 3.1, we can compute that

$$s^2 = a_1^z (a_2^z)^{-1}$$
.

It follows that $s^{2^{n-1}} = (tv)^z = u$. Thus we have

$$C(u) = \langle t, s, A \times E \rangle$$
.

Since transformation by uv interchanges a_1 and a_2 , transformation by $t = (uv)^z$ interchanges a_1^z and a_2^z . Thus,

$$s^2 s^t = a_1^z (a_2^z)^{-1} a_2^z w (d_1 d_2)^k = s,$$

so that $s^t = s^{-1}$ and $\langle t, s \rangle$ is dihedral of order 2^{n+1} .

The subgroup $L = A \times E$ is characteristic in K, being the smallest normal subgroup of K having index a power of 2. Since K is normal in C(u), L is also normal in C(u). Since every normal subgroup of $\langle t, s \rangle$ contains the central involution u, but u does not lie in L, we see that C(u) is a semidirect product (27).

We know that t centralizes A, and that it transforms $d_1^z(d_2^z)^{-1}$ into $d_2^z(d_1^z)^{-1} = (d_1^z(d_2^z)^{-1})^{-1}$, so that t inverts E. Since d_1^z centralizes $d_1^z(d_2^z)^{-1}$ and $w(d_1d_2)^k$ lies in A, which centralizes E, we see that s centralizes E. It remains to find the action of s on A, which is normal in C(u), being the derived group of L.

Since t centralizes A, $s^2 = [t, s]$ also centralizes A. Thus the automorphism φ of A induced by s satisfies

$$\varphi^2 = 1.$$

Also, φ inverts $(d_1d_2)^z$, by (28) and Lemma 3.1, and transforms w into $w(d_1d_2)^{2k} \times (a_1a_2)^z$. Since v is the unique involution in $\langle (d_1d_2)^z \rangle$, φ fixes v. Since $(d_1d_2)^{2k}(a_1a_2)^z$ is an odd power of d_1d_2 , w is not conjugate to $w(d_1d_2)^{2k}(a_1a_2)^z$ in $C_A(v) = \langle d_1d_2, w \rangle$. Hence φ is not an inner automorphism of A.

Identifying $A = PSL_2(q)$ with its own inner automorphism group, we see that φ is an element of the automorphism group $P\Gamma L_2(q)$ of A [5, pp. 90, 98], not contained in A.

Suppose that φ does not belong to $\operatorname{PGL}_2(q)$. Then, by (29), φ is induced on A by a semilinear transformation relative to a field automorphism of order 2. This is possible only if q is a square, $q=r^2$. Then we have $\delta=1$, so that $(d_1d_2)^2$ and w are elements of $A=\operatorname{PSL}_2(q)$ represented respectively by the matrices

$$\begin{bmatrix} \mu & 0 \\ 0 & \mu^{-1} \end{bmatrix}, \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},$$

where μ is a generator of the multiplicative group of F_q . If the matrix of the semilinear transformation inducing φ is R, then the fact that φ inverts $(d_1d_2)^z$ means that

$$R^{-1}\begin{bmatrix} \mu^{\mathsf{r}} & 0 \\ 0 & \mu^{-\mathsf{r}} \end{bmatrix} R = \pm \begin{bmatrix} \mu^{-1} & 0 \\ 0 & \mu \end{bmatrix}.$$

Comparing eigenvalues, we see that $\mu^r = \pm \mu$ or $\pm \mu^{-1}$, whence

$$\mu^{2(r-1)} = 1$$
, or $\mu^{2(r+1)} = 1$.

Thus q-1 divides 2(r-1) or 2(r+1). If r>3, then q-1=(r-1)(r+1)>2(r+1). Hence r=3, q=9, $\mu^3=-\mu^{-1}$, and

$$R^{-1} \begin{bmatrix} \mu^3 & 0 \\ 0 & \mu^{-3} \end{bmatrix} R = - \begin{bmatrix} \mu^{-1} & 0 \\ 0 & \mu \end{bmatrix} = \begin{bmatrix} \mu^3 & 0 \\ 0 & \mu^{-3} \end{bmatrix}.$$

It follows that R has the form

$$R = \begin{bmatrix} c & 0 \\ 0 & 1 \end{bmatrix}.$$

Now φ^2 is the element of $PSL_2(q)$ represented by the matrix

$$\begin{bmatrix} c^3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} c^4 & 0 \\ 0 & 1 \end{bmatrix},$$

so that $c^4 = 1$, i.e. c is an even power of μ . Now φ transforms w into the element of PSL₂ (q) represented by the matrix

$$R^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} R = \begin{bmatrix} 0 & -c^{-1} \\ c & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} c & 0 \\ 0 & c^{-1} \end{bmatrix}.$$

Since

$$\begin{bmatrix} c & 0 \\ 0 & c^{-1} \end{bmatrix}$$

is an even power of

$$\begin{bmatrix} \mu & 0 \\ 0 & \mu^{-1} \end{bmatrix},$$

this means that φ transforms w into wx, where x is an even power of $(d_1d_2)^2$, and thus an even power of d_1d_2 . But we have seen before that this is not so.

Thus φ belongs to PGL₂ (q) but not to PSL₂ (q), and inverts d_1d_2 . If ψ is the element of PGL₂ (q) represented by the matrix

$$\begin{bmatrix} 0 & \varepsilon \\ -1 & 0 \end{bmatrix} (\delta = 1), \text{ or } \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} (\delta = -1),$$

then ψ does not lie in PSL₂ (q), and inverts d_1d_2 . Thus $\varphi\psi^{-1}$ is an element of PSL₂ (q) lying in the centralizer of d_1d_2 , which is $\langle d_1d_2\rangle$ if q>5. Then appropriate choice of the number k in (28) gives $\varphi=\psi$. If q=5 then $d_1d_2=v$, whose centralizer in A is $\langle v, w \rangle$. Then we compute that $w\psi$ and $vw\psi$ have order 4. Hence again $\varphi\psi^{-1}$ lies in $\langle v \rangle$ and we can obtain $\varphi=\psi$ by appropriate choice of k. This completes the proof of Lemma 3.7.

4. The p-structure of G. We shall determine the structure of the normalizer in G of a Sylow p-subgroup, where p is the characteristic of the field F_q .

For α in F_q , we put

(30)
$$\theta(\alpha) = \begin{bmatrix} 1 & 0 \\ \alpha & 1 \end{bmatrix}.$$

The $\theta(\alpha)$ form a Sylow p-subgroup of $SL_2(q)$. Using the isomorphisms of Lemma 1.1 (ii) and writing $\theta_i(\alpha)$ for $\theta(\alpha)_i$ (i=1, 2), we obtain Sylow p-subgroups of L_1 and L_2 :

$$(31) P_i = \{\theta_i(\alpha) \mid \alpha \in F_\alpha\} (i = 1, 2).$$

The mapping $\alpha \to \theta_i(\alpha)$ is an isomorphism of the additive group of F_q with P_i , so that P_i is elementary Abelian of order q. The subgroup

$$(32) R = P_1 P_2 = P_1 \times P_2$$

is a Sylow p-subgroup of C(t). By Lemma 3.7, the subgroup

(33)
$$D_1 = \{\theta_1(\alpha)\theta_2(\alpha) \mid \alpha \in F_a\}$$

is a Sylow p-subgroup of C(u), elementary Abelian of order q. We shall also need the subgroup

(34)
$$D_2 = \{\theta_1(\alpha)\theta_2(-\alpha) \mid \alpha \in F_a\}.$$

Then R also has direct product decompositions

$$(35) R = P_1 D_1 = D_1 D_2.$$

We shall put

$$(36) h = \begin{bmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{-1} \end{bmatrix},$$

which is the same as d when $\delta = 1$ but not when $\delta = -1$, and, using the isomorphisms of Lemma 1.1 (ii), form the subgroup

$$(37) H = \langle h_1, h_2 \rangle.$$

Then H is an Abelian subgroup of order $\frac{1}{2}(q-1)^2$, and we have

(38)
$$h_1^{(q-1)/2} = h_2^{(q-1)/2} = t.$$

The normalizer of R in C(t) is

$$(39) N(R) \cap C(t) = RH\langle u \rangle.$$

We shall also put

(40)
$$y = (sw)^{2^{n-2}e}$$
, or $y = s^{2^{n-2}e}$

according as $\delta = 1$ or $\delta = -1$, where s is the element of C(u) referred to in Lemma 3.7. Then the automorphism of A induced by y is the same as that induced by the matrix

$$\begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & 0 \\ 0 & \pm 1 \end{bmatrix},$$

according as $\delta = 1$ or $\delta = -1$, where $i^2 = -1$. Thus y has the following properties:

$$(41) y \in N(D_1),$$

(42)
$$(h_1h_2)^y = h_1h_2$$
; and $w^y = vw$ if $\delta = 1$, $w^y = w$ if $\delta = -1$.

Also, we can compute that

(43)
$$y^2 = uv \text{ if } \delta = 1; \quad y^2 = u \text{ if } \delta = -1;$$

$$(44) t^y = tu, (tu)^y = t.$$

Thus R^y is a Sylow p-subgroup of C(tu), and

$$(45) R \cap R^y = D_1.$$

We require the following result connecting R, R^y and subgroups of the group E of Lemma 3.7.

LEMMA 4.1. If
$$\{1\} < F \le E$$
, then $N(F) \cap R = N(F) \cap R^y = D_1$.

Proof. Clearly $N(F) \cap R \ge D_1$. Suppose that $N(F) \cap R > D_1$. Then, from (35), $N(F) \cap P_1 > \{1\}$. Now $\langle h_1 h_2 \rangle$ normalizes both F and P_1 , so that it normalizes $N(F) \cap P_1$. But $\langle h_1 h_2 \rangle$ acts irreducibly on P_1 , since an element of $\langle h_1 h_2 \rangle$ transforms $\theta_1(\alpha)$ into $\theta_1(\beta\alpha)$, where β can be any nonzero square in F_q , and every element of F_q is a sum of squares. Thus $N(F) \cap P_1 = P_1$, so that

$$N(F) \geq P_1 D_1 = R.$$

Since F is cyclic, we have

$$|\operatorname{Aut} F| \leq |F| - 1 \leq e - 1 < q$$

since e leq leq (q+1). Thus $|N(F) \cap R| < C(F) \cap R| < q$, so that $|C(F) \cap R| > q$. Since $C(F) leq D_1$, we have $C(F) \cap R > D_1$. Now the same argument as before shows that $C(F) leq P_1$. Since A leq C(F), C(F) contains all transforms of P_1 by elements of A. Since these generate L_1 , C(F) contains the element t of L_1 . But t inverts F, so that we have a contradiction. Hence $N(F) \cap R = D_1$. Transforming by y, we have $N(F) \cap R^y = D_1$. This proves the lemma.

We now consider the centralizer of D_1 in G.

LEMMA 4.2. The group $C(D_1)$ has a normal 2-complement M, which is a semi-direct product

$$M = EQ$$
, $Q \triangleleft M$, $E \cap Q = \{1\}$,

where $Q = R^y R$, $|Q| = q^3$.

Proof. Since $C_A(D_1) = D_1$, we find from Lemma 3.7 that

(46)
$$C(D_1) \cap C(u) = D_1 \times \langle t, s^2 \rangle E.$$

The Sylow 2-subgroup $\langle t, s^2 \rangle$ of this group is dihedral of order 2^n . Also, from the structure of C(t), and (41) and (44), we have

$$(47) C(D_1) \cap C(t) = R\langle t, u \rangle,$$

(48)
$$C(D_1) \cap C(tu) = R^{y} \langle t, u \rangle.$$

The argument of Lemma 2.1 shows that $\langle t, s^2 \rangle$ is a Sylow 2-subgroup of $C(D_1)$. All involutions of $t\langle s^2 \rangle$ are conjugate in $\langle t, s \rangle$ to t, and so are not conjugate to the involution u of $\langle s^2 \rangle$. It follows (for example, by Lemma 3.3 and Burnside's theorem) that $C(D_1)$ has a normal 2-complement M.

The four-subgroup $\langle t, u \rangle$ of $C(D_1)$ acts on M. By (46), (47) and (48), we have

(49)
$$C_M(u) = ED_1, \quad C_M(t) = R, \quad C_M(tu) = R^y.$$

By Lemma 3.6, we have $|M| = eq^3$, $M = ER^yR$.

If F is any nontrivial subgroup of E, then $\langle t, u \rangle$ acts on $N_M(F)$. Using (49) and Lemma 4.1, we find that

$$N_M(F) \cap C(u) = ED_1, \qquad N_M(F) \cap C(t) = N_M(F) \cap C(tu) = D_1.$$

By Lemma 3.6, $N_M(F) = ED_1$, so that F lies in the center of $N_M(F)$. It follows from Burnside's theorem [8, Theorem 14.3.1] that M has a normal r-complement for every prime divisor r of e. Thus M has a normal subgroup Q of order q^3 , which must be R^yR , and M = EQ. This proves the lemma.

We remark that Q is characteristic in M, which is characteristic in $C(D_1)$, which is normal in $N(D_1)$, so that Q is normal in $N(D_1)$, i.e.

$$(50) N(D_1) \leq N(Q).$$

We shall prove that Q is Abelian by considering the centralizer of R.

LEMMA 4.3. The group Q is elementary Abelian of order q^3 , and is the normal 2-complement of the group C(R). Also,

$$(51) C(Q) = Q.$$

Proof. From the structure of C(t), $C(R) \cap C(t) = R\langle t \rangle$. By the argument of Lemma 2.1, $\langle t \rangle$ is a Sylow 2-subgroup of C(R), so that, by Burnside's theorem, C(R) has a normal 2-complement K. The four-group $\langle t, u \rangle$ normalizes R and so

acts on K. We have $C_K(t) = R$. Since $C(u) \cap C(R) \le C(u) \cap C(D_1)$, and since $C(R) \cap E = \{1\}$ by Lemma 4.1, we find from (46) that $C_K(u) = D_1$. Thus, $C_K(tu) \ge C_K(t, u) = D_1$.

Suppose that $C_K(tu) \cap R^v = D_1$. By (48), R^v is the only Sylow *p*-subgroup of C(tu) containing D_1 , so that D_1 is a Sylow *p*-subgroup of $C_K(tu)$. Then Lemma 3.6 shows that R is a Sylow *p*-subgroup of K. Now the Frattini argument and (39) show that

$$N(R) = C(R)(N(R) \cap C(t)) = C(R)H\langle u \rangle,$$

so that a Sylow p-subgroup of C(R) is also a Sylow p-subgroup of N(R). Thus R is a Sylow p-subgroup of N(R), so that R is a Sylow p-subgroup of G, contradicting Lemma 4.2.

Hence $C_K(tu) \cap R^y > D_1$. By (35) and (41), $R^y = P_1^y D_1$, so that

$$C_K(tu) \cap P_1^y > \{1\}.$$

Now, elements of $\langle h_1 h_2 \rangle^y$ centralize $\langle t, u \rangle^y = \langle t, u \rangle$, and normalize $D_1^y = D_1$. In particular, $\langle h_1 h_2 \rangle^y$ must normalize the normal 2-complement R of $C(D_1) \cap C(t)$. Thus $\langle h_1 h_2 \rangle^y$ normalizes K. Since $\langle h_1 h_2 \rangle^y$ normalizes P_1^y , it normalizes $C_K(tu) \cap P_1^y$. Since $\langle h_1 h_2 \rangle^y$ acts irreducibly on P_1^y , we have $C_K(tu) \ge P_1^y$, so that

$$C_{\kappa}(tu) \geq P_1^{\nu}D_1 = R^{\nu}.$$

Since $C(tu) \cap C(R) \le C(tu) \cap C(D_1)$, it follows from (48) that $C_K(tu) = R^y$. Now Lemma 3.6 shows that $K = R^y R D_1 = R^y R = Q$.

Since R and R^y are elementary Abelian and $R^y \le C(R)$, Q is elementary Abelian. Since $C(Q) \le C(R) = \langle t \rangle Q$, C(Q) = Q. This proves the lemma.

We remark that Q is characteristic in C(R) which is normal in N(R), so that we have

$$(52) N(R) \le N(Q).$$

We now put

(53)
$$P_3 = D_2^{\nu}, \qquad \theta_3(\alpha) = (\theta_1(\alpha)\theta_2(-\alpha))^{\nu}.$$

Then, by (35) and (41), $R^y = D_1 \times P_3$, so that

$$Q = P_1 \times P_2 \times P_3.$$

Since C(Q) = Q, N(Q)/Q acts faithfully on Q. Since $H \le N(Q)$ by (39) and (52), H acts faithfully on Q. We now determine this action.

LEMMA 4.4. The action of H on Q is given by

$$h_1 \colon \theta_1(\alpha) \to \theta_1(\varepsilon^2 \alpha), \quad \theta_2(\alpha) \to \theta_2(\alpha), \quad \theta_3(\alpha) \to \theta_3(\varepsilon \alpha),$$

 $h_2 \colon \theta_1(\alpha) \to \theta_1(\alpha), \quad \theta_2(\alpha) \to \theta_2(\varepsilon^2 \alpha), \quad \theta_3(\alpha) \to \theta_3(\varepsilon \alpha).$

Proof. The actions of h_1 and h_2 on $\theta_1(\alpha)$ and $\theta_2(\alpha)$ are known, since these elements are contained in C(t). Since tu inverts D_2 , (44) and (53) show that t inverts P_3 , so that $[t, Q] = P_3$. Since H normalizes Q and centralizes t, H normalizes t.

We now write Q additively instead of multiplicatively, and make it into a 3-dimensional vector space over F_q by defining scalar multiplication as follows:

$$\lambda(\theta_1(\alpha) + \theta_2(\beta) + \theta_3(\gamma)) = \theta_1(\lambda\alpha) + \theta_2(\lambda\beta) + \theta_3(\lambda\gamma).$$

Since h_1h_2 : $\theta_1(\alpha)\theta_2(-\alpha) \to \theta_1(\varepsilon^2\alpha)\theta_2(-\varepsilon^2\alpha)$, (42) and (53) imply that

$$h_1h_2$$
: $\theta_3(\alpha) \to \theta_3(\varepsilon^2\alpha)$.

Thus the effect of $(h_1h_2)^m$ on Q is multiplication by the scalar ε^{2m} . Since h_1 , h_2 and tu commute with h_1h_2 , their action on Q is additive and commutes with multiplication by square scalars. Since every element of F_q is a sum of squares, h_1 , h_2 and tu induce linear transformations on Q. Representing these transformations by their matrices with respect to the basis $\theta_1(1)$, $\theta_2(1)$, $\theta_3(1)$ of Q, we have

$$h_1 \to \begin{bmatrix} \varepsilon^2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \mu \end{bmatrix}, \qquad h_2 \to \begin{bmatrix} 1 & 0 & 0 \\ 0 & \varepsilon^2 & 0 \\ 0 & 0 & \nu \end{bmatrix}, \qquad tu \to \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since h_1h_2 induces multiplication by the scalar ε^2 , and tu transforms h_1 into h_2 , we have

$$\mu\nu = \varepsilon^2, \qquad \mu = \nu.$$

When $\delta = -1$, we cannot have $\mu = -\varepsilon$, since then $t = h_1^{(q-1)/2}$ would act trivially on Q, which is not so. When $\delta = 1$, nothing up to this point is changed if we replace ε by $-\varepsilon$, which is another generator of the multiplicative group of F_q , and S by SV. Thus in either case we may take $\mu = \nu = \varepsilon$, which yields the lemma.

We now consider the structure of $N(P_1)$.

LEMMA 4.5. Let $V = O(C(P_1))$. Then

$$C(P_1) = L_2 V$$
, $N(P_1) = L_2 V \langle h_1 \rangle$.

The group V/P_1 is Abelian, and V is nilpotent. Also,

$$Q \cap V = P_1 P_3$$
.

Proof. The centralizer of P_1 in C(t) is

$$C(P_1) \cap C(t) = L_2 P_1.$$

The Sylow 2-subgroup $\langle a_2, b_2 \rangle$ of this group is a generalized quaternion group. By the argument of Lemma 2.1, $\langle a_2, b_2 \rangle$ is a Sylow 2-subgroup of $C(P_1)$. By a

theorem of Brauer and Suzuki [1, Theorem 2, p. 321], if $V = O(C(P_1))$, then $C(P_1)/V$ has center $\langle t \rangle V/V$. Thus $\langle t \rangle V$ is normal in $C(P_1)$. By the Frattini argument,

$$C(P_1) = (C(P_1) \cap C(t))V = L_2V,$$

since obviously $P_1 \le V$. Since $C(P_1)$ is normal in $N(P_1)$, we have, by the Frattini argument and the fact that $\langle t \rangle$ is characteristic in $\langle a_2, b_2 \rangle$,

$$N(P_1) = C(P_1)(N(P_1) \cap C(t)) = L_2 V \langle h_1 \rangle.$$

Since $C_V(t) = P_1$, t acts without fixed point on V/P_1 , so that V/P_1 is Abelian. Since $P_1 \le Z(V)$, V is nilpotent (of class at most 2).

Suppose that x is an element of odd order in $C(P_1)$ which is inverted by t. Since t centralizes all elements of $C(P_1)$ modulo V, x must be an element of V. Now $t=(tu)^y$ inverts $D_2^y=P_3$, so that we must have $P_3 \le V$. It follows that $Q \cap V=P_1P_3$. This proves the lemma.

By considering $C(P_3)$, we shall show that in fact V is a p-group.

LEMMA 4.6. $C(P_3)$ has a normal 2-complement, and

$$O(C(P_3)) \leq QH$$
.

Proof. Suppose first that $\delta = 1$. Then the centralizer of D_2 in C(t) is

$$C(D_2) \cap C(t) = R\langle t, uv \rangle.$$

If x is any involution, then, from the structures of C(t) and C(u), the centralizer in C(x) of any subgroup of order q has as Sylow 2-subgroup either a four-group or a generalized quaternion group. Now the argument of Lemma 2.1 shows that $\langle t, uv \rangle$ is a Sylow 2-subgroup of $C(D_2)$. The involutions of $\langle t, uv \rangle$ are not all conjugate in $C(D_2)$, since $t \in K_1$, $tuv \in K_2$. Thus $C(D_2)$ has a normal 2-complement, and so does $C(P_3) = C(D_2)^y$.

Suppose now that $\delta = -1$. Then the centralizer of D_2 in C(t) is

$$C(D_2) \cap C(t) = R\langle t \rangle$$
,

and $\langle t \rangle$ is a Sylow 2-subgroup of $C(D_2)$, so that $C(D_2)$ and hence $C(P_3)$ has a normal 2-complement.

In either case, the four-group $\langle t, u \rangle$ normalizes D_2 and so acts on $O(C(D_2))$. We have

$$O(C(D_2)) \cap C(t) = R$$
, $O(C(D_2)) \cap C(u) \geq D_1$, $O(C(D_2)) \cap C(tu) \geq D_1$.

Now each Sylow p-subgroup of PSL₂ (q) is contained in a unique largest odd order subgroup, the normal 2-complement of its normalizer, since every pair of distinct Sylow p-subgroups generates PSL₂ (q). It follows that C(u) has a unique largest odd order subgroup containing D_1 , and that this is contained in $D_1 \langle h_1 h_2 \rangle E$. If $C(D_2)$ contains an element xf of $D_1 \langle h_1 h_2 \rangle E$, where $x \in D_1 \langle h_1 h_2 \rangle$, $f \in E$, then $C(D_2)$

also contains $[t, xf] = f^2$. Then D_2 normalizes $\langle f^2 \rangle$, so that, by Lemma 4.1, $f^2 = 1$, i.e. f = 1. Hence

$$O(C(D_2)) \cap C(u) \leq D_1 \langle h_1 h_2 \rangle.$$

Also, $C(tu) = C(t)^{y}$ has a unique largest odd order subgroup containing $D_{1}^{y} = D_{1}$, and this is contained in $R^{y}H^{y}$. Thus,

$$O(C(D_2)) \cap C(tu) \leq R^y H^y$$
.

By Lemma 3.6, we have $O(C(D_2)) \le R^y R H^y$, since $\langle h_1 h_2 \rangle = \langle h_1 h_2 \rangle^y$. From (43), y^2 normalizes R and H, so that we have

$$O(C(P_3)) = O(C(D_2))^y \le RR^y H = QH.$$

LEMMA 4.7. $V = O(C(P_1))$ is a p-group.

Proof. Applying Lemma 4.6, we find that

$$C_{\nu}(P_3) \leq O(C(P_3)) \cap C(P_1) \leq Q\langle h_2 \rangle \leq L_2 P_1 P_3.$$

Hence $C_v(P_3) = P_1 P_3$. By nilpotency of V, $C_v(P_3)$ contains all p'-elements of V. Hence V is a p-group. This proves the lemma.

We now set

$$(55) c = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

The element c_2 of C(t) centralizes P_1 and so normalizes V. Hence, $P_{3^2} \leq V$. We put

(56)
$$P_4 = P_{32}^{c_2}, \qquad \theta_4(\alpha) = \theta_3(\alpha)^{c_2}.$$

By Lemma 4.4, $h_1h_2^{-1}$ centralizes P_3 . Since c_2 transforms $h_1h_2^{-1}$ into h_1h_2 ,

$$(57) h_1 h_2 \in C(P_4).$$

Also by Lemma 4.4, and the assumption (13), h_1h_2 acts without fixed point on P_1P_3 . Hence,

$$P_1P_3 \cap P_4 = \{1\}, \qquad V \ge P_1P_3P_4.$$

Since V/P_1 is Abelian, P_4 normalizes P_1P_3 , so that $P_1P_3P_4$ is in fact a group. This shows that a Sylow p-subgroup of G has order at least q^4 . We shall prove

LEMMA 4.8. $V = P_1P_3P_4$. If $U = P_2V = P_1P_2P_3P_4$, then

$$N(U) \cap N(P_1) = UH \leq N(Q)$$
.

Also, P_1P_3 is normal in U, and U/P_1P_3 is Abelian.

Proof. Consider first the case when $\delta = 1$. Then $\langle t, v \rangle$ normalizes P_1 , and so acts on V. We know that $C_V(t) = P_1$. Since $v = (h_1 h_2)^{(q-1)/4}$ in this case, y commutes with v, by (42). By (44), $(tuv)^y = tv$. Since tuv centralizes D_2 , tv centralizes $D_2^y = P_3$.

Then P_3 is a Sylow p-subgroup of C(tv), since tv lies in K_2 . By Lemma 4.7, it follows that

$$C_{V}(tv) = P_{3}.$$

Since c_2 normalizes V and transforms tv into v, we have $C_V(v) = P_4$. By Lemma 3.6, $V = P_1 P_3 P_4$.

If $U=P_2V$, it now follows from Lemma 4.5 that

$$N(U) \cap N(P_1) = (N(P_2) \cap L_2 \langle h_1 \rangle) V = P_2 \langle h_1, h_2 \rangle V = UH.$$

Since V/P_1 is Abelian, P_1P_3 is normal in V. Also, P_2 centralizes P_1P_3 . Hence P_1P_3 is normal in U. Since tv inverts $P_2 \approx U/V$ and $C_V(tv) = P_3$, tv acts without fixed point on U/P_1P_3 , so that U/P_1P_3 is Abelian.

In particular, $Q = P_1 P_2 P_3$ is normal in U. By (39) and (52), $H \le N(Q)$. Thus $UH \le N(Q)$. This completes the proof of Lemma 4.8 in the case $\delta = 1$.

If $\delta = -1$, the above argument is not available since v does not normalize P_1 . However we can obtain the same result, and more information as well, by studying N(Q).

LEMMA 4.9. Let $\delta = -1$. Then,

$$N(Q)/Q = J \times Z$$

where J is isomorphic with $PGL_2(q)$, and $Z = \langle h_1 h_2 \rangle Q/Q$, a cyclic group of order $\frac{1}{2}(q-1)$. J contains the elements tQ, uQ, yQ, $h_1h_2^{-1}Q$.

Proof. Let W = O(N(Q)). By (47) and (50), $\langle t, u \rangle \leq N(Q)$, so that $\langle t, u \rangle$ acts on W. Also, $y \in N(Q)$, by (41) and (50). Of course $W \geq Q$. We have

$$C_{w}(t) \ge C_{o}(t) = R$$
, $C_{w}(u) \ge C_{o}(u) = D_{1}$, $C_{w}(tu) = C_{w}(t)^{y}$.

Now $R\langle h_1^2, h_1 h_2 \rangle$ is the unique largest subgroup of odd order in C(t) containing R, and $D_1\langle h_1 h_2 \rangle E$ is the unique largest subgroup of odd order in C(u) containing D_1 . Since $(h_1 h_2)^y = h_1 h_2$, it follows from Lemma 3.6 that

(58)
$$W \leq Q\langle h_1^2, (h_1^y)^2, h_1 h_2, E \rangle.$$

By (50) and the fact that $D_1 = Q \cap C(u)$, we have

$$(59) N(Q) \cap C(u) = N(D_1) \cap C(u) = \langle t, s \rangle D_1 \langle h_1 h_2 \rangle E.$$

The Sylow 2-subgroup $\langle t, s \rangle$ of this group is dihedral of order 2^{n+1} , with u as its unique central involution. By the argument of Lemma 2.1, $\langle t, s \rangle$ is a Sylow 2-subgroup of N(Q).

We know that a Sylow p-subgroup of G has order at least q^4 , so that Q is not a Sylow p-subgroup of G, and hence not of N(Q). However, Q is a Sylow p-subgroup of W, by (58). Hence |N(Q):W| is divisible by p, so that N(Q) does not have a normal 2-complement.

Not all the involutions of $\langle t, s \rangle$ are conjugate in N(Q), since t and u are not conjugate in G. This implies that N(Q) has a subgroup of index 2 and that u is conjugate in N(Q) to ts. Now, using (59), we have

$$C_{N(Q)/Q}(uQ) = C_{N(Q)}(u)Q/Q = \langle t, s, h_1h_2, E \rangle Q/Q,$$

which is isomorphic with $\langle t, s, h_1 h_2, E \rangle$, which has a normal Abelian 2-complement $\langle h_1 h_2, E \rangle$. By a theorem of Gorenstein and Walter [7, Theorem I],

$$N(Q)/W \approx PGL_2(r)$$
,

for some odd prime power r.

Since the centralizer of an involution in $PGL_2(r)$ is dihedral, and h_1h_2 lies in the center of $\langle t, s, h_1h_2, E \rangle$, we must have $h_1h_2 \in W$.

Suppose that $W \cap E = F > \{1\}$. Then, since W is solvable and F is a Hall subgroup of W, there is a chief factor X of N(Q) in W, covered by a subgroup of F. Then X is centralized by u and hence by its conjugate ts. But, ts inverts E and so inverts X, so that we have a contradiction. Thus,

$$W \cap E = \{1\}, \qquad C_{N(O)/W}(uW) \approx \langle t, s \rangle E.$$

The order of $\langle t, s \rangle E$ is $2^{n+1}e = 2(q+1)$. But, the structure of $PGL_2(r)$ shows that its order must be 2(r+1) or 2(r-1). Thus, r=q or r=q+2.

By (52), the fact that $R = Q \cap C(t)$, and (39), we have

$$N(Q) \cap C(t) = RH\langle u \rangle = R\langle t, u \rangle \langle h_1^2, h_1 h_2 \rangle.$$

Since $h_1h_2 \in W$, it follows that

$$C_{N(Q)/W}(tW) \approx \langle t, u \rangle \langle h_1^2 \rangle / (\langle h_1^2 \rangle \cap W),$$

whose order is a divisor of 2(q-1). By the structure of $PGL_2(r)$, this order must be 2(r-1) or 2(r+1), so that $r \le q$. Hence we must have r = q, so that

$$N(Q)/W \approx PGL_2(q)$$
.

Also, $\langle h_1^2 \rangle \cap W = \{1\}$, and we have

$$C_w(t) = R\langle h_1 h_2 \rangle, \quad C_w(u) = D_1 \langle h_1 h_2 \rangle, \quad C_w(tu) = R^y \langle h_1 h_2 \rangle,$$

so that, by Lemma 3.6, $W = Q\langle h_1 h_2 \rangle$.

The Hall subgroup $\langle h_1^2, h_1 h_2 \rangle$ of N(Q) splits over $\langle h_1 h_2 \rangle$. It follows by a theorem of Gaschütz [8, Theorem 15.8.6] that N(Q)/Q splits over W/Q:

$$N(O)/O = JZ, \quad J \cap Z = 1,$$

where Z = W/Q, $J \approx PGL_2(q)$. Now, Z is centralized by the involution tQ, which corresponds to an involution of $PGL_2(q)$ not lying in $PSL_2(q)$. Since such an

involution and its conjugates generate $PGL_2(q)$, we see that Z lies in the center of N(Q)/Q, so that

$$N(Q)/Q = J \times Z$$
.

Since Z has odd order, J must contain all elements of order 2 or 4 in N(Q)/Q. Thus J contains tQ, uQ, yQ. We have

$$C_t(tQ) = \langle tQ, uQ, M \rangle$$

where $MZ = \langle h_1^2, h_1 h_2 \rangle Q/Q$. From the structure of $PGL_2(q)$, uQ must invert M. We know that uQ centralizes Z. Hence

$$M = [uQ, MZ] = [u, \langle h_1^2, h_1 h_2 \rangle]Q/Q = \langle h_1 h_2^{-1} \rangle Q/Q,$$

so that $h_1h_2^{-1}$ lies in J. This completes the proof of Lemma 4.9.

LEMMA 4.10. Let $\delta = -1$. One can choose a matrix representation of J as $PGL_2(q)$ in such a way that, if $\eta(\alpha)$ is the element of J represented by the matrix

$$\begin{bmatrix} 1 & 0 \\ \alpha & 1 \end{bmatrix}$$
,

then the action of the Sylow p-subgroup $P = \{\eta(\alpha) \mid \alpha \in F_a\}$ of J on Q is given by

(60)
$$\eta(\alpha): \theta_1(\beta) \to \theta_1(\beta), \quad \theta_2(\beta) \to \theta_1(\alpha^2\beta)\theta_2(\beta)\theta_3(\mu\alpha\beta), \quad \theta_3(\beta) \to \theta_1(2\mu\alpha\beta)\theta_3(\beta),$$

where $\mu=\pm 1$. If U_1 is the subgroup of N(Q) containing Q such that $U_1/Q=P$, then U_1 is a Sylow p-subgroup of G (of order q^4), Q is the unique Abelian subgroup of order q^3 in U_1 , $Z(U_1)=P_1$, and P_1P_3 is normal in U_1 .

Proof. We write Q additively and make it into a 3-dimensional vector space over F_q , as in the proof of Lemma 4.4. The action on Q of the element $(h_1h_2)^mQ$ of Z is multiplication by the scalar ε^{2m} . Since J centralizes Z, the action of J on Q is additive and commutes with multiplication by square scalars. Since all scalars are sums of squares, J acts linearly on Q. We represent linear transformations on Q by matrices with respect to the basis $\theta_1(1)$, $\theta_2(1)$, $\theta_3(1)$. From Lemma 4.4, we know the action on Q of the elements tQ, uQ, $h_1h_2^{-1}Q$ of J:

(61)
$$tQ \to \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad uQ \to \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix},$$
$$h_1 h_2^{-1} Q \to \begin{bmatrix} \varepsilon^2 & 0 & 0 \\ 0 & \varepsilon^{-2} & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

In any 1-dimensional representation of $PGL_2(q)$, elements of $PSL_2(q)$ are represented by 1. Since uQ corresponds in $J=PGL_2(q)$ to an element of $PSL_2(q)$

but one of the eigenvalues of the linear transformation on Q corresponding to uQ is -1, the representation of J on Q is not reducible into three 1-dimensional constituents.

The description by Brauer and Nesbitt [2, p. 588] of the irreducible representations of $PGL_2(q)$ over F_q shows that the representation of J on Q is irreducible, and that, if a matrix representation of J as $PGL_2(q)$ is taken, then Q can be identified with the space of homogeneous polynomials of degree 2 in two variables x_1 , x_2 , the action on Q of the element of J represented by the matrix $A = [a_{ij}]$ being to transform

$$f(x_1, x_2) \to (\det A)^m f(x_1', x_2'),$$

where

(62)
$$x'_i = \sum_j \varphi(a_{ij}) x_j,$$

where φ is an automorphism of the field F_q and m is an integer such that diagonal matrices act trivially on Q, i.e. $\alpha^{2m}\varphi(\alpha)^2=1$ for all nonzero α in F_q .

If we replace the matrix $[a_{ij}]$ representing an element of J by the matrix $[\varphi(a_{ij})]$, we have another matrix representation of J. Thus we can assume in (62) that $\varphi = 1$. Then we must have m = -1 or $\frac{1}{2}(q-1)-1$.

Since uQ lies in $PSL_2(q)$, which has only one class of involutions, we can suppose that the matrix representation of J is such that

$$uQ \sim \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

(where \sim means "is represented by"). Since all involutions of the centralizer of uQ which lie in $PGL_2(q) - PSL_2(q)$ are conjugate in the centralizer of uQ, we can assume that

$$tQ \sim \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

If m=-1, the subspace [t, Q] of elements of Q transformed by tQ into their negatives would be the subspace spanned by x_1^2 and x_2^2 . But, (61) shows that [t, Q] is the 1-dimensional subspace P_3 . Hence $m=\frac{1}{2}(q-1)-1$, and P_3 is the subspace spanned by x_1x_2 . By choice of scale, we may take $\theta_3(1)=2x_1x_2$. The subspace of vectors of Q fixed by uQ is the subspace spanned by $x_1^2+x_2^2$. By (61), it is the subspace spanned by $\theta_1(1)+\theta_2(1)$. Hence,

$$\theta_1(1) + \theta_2(1) = \mu(x_1^2 + x_2^2),$$

for some scalar μ . The subspace of vectors of Q transformed into their negatives by tuQ is spanned by $x_1^2 - x_2^2$ and also by $\theta_1(1) - \theta_2(1)$. Hence,

$$\theta_1(1) - \theta_2(1) = \nu(x_1^2 - x_2^2),$$

for some scalar ν .

Since $h_1h_2^{-1}Q$ is an element of odd order commuting with tQ,

$$h_1h_2^{-1}Q \sim \begin{bmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{bmatrix},$$

for some scalar λ . Then $h_1h_2^{-1}Q$ transforms

$$x_1^2 + x_2^2 \to \frac{1}{2}(\lambda^2 + \lambda^{-2})(x_1^2 + x_2^2) + \frac{1}{2}(\lambda^2 - \lambda^{-2})(x_1^2 - x_2^2),$$

$$x_1^2 - x_2^2 \to \frac{1}{2}(\lambda^2 - \lambda^{-2})(x_1^2 + x_2^2) + \frac{1}{2}(\lambda^2 + \lambda^{-2})(x_1^2 - x_2^2).$$

Substitution for $x_1^2 + x_2^2$ and $x_1^2 - x_2^2$ in terms of $\theta_1(1)$ and $\theta_2(1)$ and comparison with (61) shows that

$$\lambda^2 + \lambda^{-2} = \varepsilon^2 + \varepsilon^{-2}$$
 $\mu(\lambda^2 - \lambda^{-2}) = \nu(\varepsilon^2 - \varepsilon^{-2}).$

Since $\lambda^2 + \lambda^{-2} - \varepsilon^2 - \varepsilon^{-2} = (\lambda^2 - \varepsilon^2)(1 - \lambda^{-2}\varepsilon^{-2})$, $\lambda^2 = \varepsilon^2$ or $\lambda^2 = \varepsilon^{-2}$. Since a matrix and its negative represent the same element of PGL₂ (q), we may take $\lambda = \varepsilon$ or $\lambda = \varepsilon^{-1}$. Since uQ centralizes tQ and uQ, and inverts $h_1h_2^{-1}Q$, we may assume that $\lambda = \varepsilon$, so that

$$h_1h_2^{-1}Q \sim \begin{bmatrix} \varepsilon & 0 \\ 0 & \varepsilon^{-1} \end{bmatrix}.$$

Now, $\mu(\varepsilon^2 - \varepsilon^{-2}) = \nu(\varepsilon^2 - \varepsilon^{-2})$, and $\varepsilon^2 \neq \varepsilon^{-2}$, by the assumption that q > 3. Hence $\mu = \nu$, so that

$$\theta_1(1) = \mu x_1^2, \quad \theta_2(1) = \mu x_2^2.$$

Since $y^2 = u$, by (43), we have

$$yQ \sim \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
 or $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$.

This transforms $x_1^2 - x_2^2$ into $\pm 2x_1x_2$. Since yQ transforms $\theta_1(1) - \theta_2(1)$ into $\theta_3(1)$, by (53), we have $\mu = \pm 1$.

If $\eta(\alpha)$ is the element of J such that

$$\eta(\alpha) \sim \begin{bmatrix} 1 & 0 \\ \alpha & 1 \end{bmatrix},$$

then we can now compute that the action of $\eta(\alpha)$ of Q is given by

$$\eta(\alpha) \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ \alpha^2 & 1 & \mu\alpha \\ 2\mu\alpha & 0 & 1 \end{bmatrix}.$$

This is equivalent to the relations (60).

Let P be the group consisting of all the $\eta(\alpha)$ and U_1 the subgroup of N(Q) containing Q such that $U_1/Q = P$. If $\alpha \neq 0$, then the subgroup of vectors of Q left fixed

by $\eta(\alpha)$ is P_1 . It follows that every Abelian subgroup of U_1 not contained in Q must meet Q in at most P_1 , and so has order at most q^2 . Hence Q is the only Abelian subgroup of order q^3 in U_1 , and also $Z(U_1) = P_1$. Also, the relations (60) imply that P_1P_3 is normal in U_1 .

Since Q is characteristic in U_1 , $N(U_1) \le N(Q)$. Since U_1 is a Sylow p-subgroup of N(Q), we see that U_1 is a Sylow p-subgroup of G. Obviously $|U_1| = q^4$. This completes the proof of Lemma 4.10.

We can now prove Lemma 4.8 in the case $\delta=-1$. Since a Sylow *p*-subgroup of G has order q^4 , we must have $V=P_1P_3P_4$ since otherwise P_2V would be a *p*-subgroup of G (Lemma 4.7) of order greater than q^4 . Since $U_1 \leq C(P_1)$, U_1V is a p-subgroup of G, so that $U_1 \geq V$. Also, $P_2 < Q \leq U_1$. Hence $U=P_2V \leq U_1$, so that $U=U_1$. Since P_1P_3 is normal in U, P_2 and P_4 are Abelian, and $[P_2, P_4] \leq P_1P_3$ by (60), U/P_1P_3 is Abelian. As in the proof for the case $\delta=1$, $N(U) \cap N(P_1)=UH$. Finally, $U=U_1 \leq N(Q)$ and $H \leq N(R) \leq N(Q)$, so that $UH \leq N(Q)$. This completes the proof of Lemma 4.8.

We now achieve the object of this section, by determining the structure of UH.

LEMMA 4.11. The structure of $UH = P_1P_2P_3P_4H$ is determined by the relations

$$\begin{split} [\theta_i(\alpha),\,\theta_1(\beta)] &= [\theta_2(\alpha),\,\theta_3(\beta)] = 1, \qquad (i=2,\,3,\,4), \\ \theta_4(\alpha)\colon \theta_2(\beta) &\to \theta_1(-\delta\alpha^2\beta)\theta_2(\beta)\theta_3(\alpha\beta), \qquad \theta_3(\beta) \to \theta_1(-2\delta\alpha\beta)\theta_3(\beta), \\ h_1\colon \theta_4(\alpha) &\to \theta_4(\varepsilon\alpha), \qquad h_2\colon \theta_4(\alpha) \to \theta_4(\varepsilon^{-1}\alpha), \end{split}$$

and the relations of Lemma 4.4, together with the known structure of P_1 , P_2 , P_3 , P_4 and H. The group U is a Sylow p-subgroup of G, and N(U) = UH.

Proof. Since c_2 centralizes h_1 , inverts h_2 , and transforms $\theta_3(\alpha)$ into $\theta_4(\alpha)$, we find from Lemma 4.4 that

$$h_1: \theta_4(\alpha) \to \theta_4(\varepsilon \alpha), \qquad h_2: \theta_4(\alpha) \to \theta_4(\varepsilon^{-1}\alpha).$$

Now, $UH = QP_4H$, and Q is a normal subgroup of UH. We have determined the action of H on Q in Lemma 4.4. We need to find the action of P_4 on Q.

By (57), h_1h_2 centralizes P_4 . Making Q into a 3-dimensional vector space over F_q as in Lemma 4.4, we see that P_4 induces linear transformations on Q. Again we represent linear transformations by their matrices with respect to the basis $\theta_1(1)$, $\theta_2(1)$, $\theta_3(1)$.

Since $P_1 \le Z(U)$ and U/P_1P_3 is Abelian, elements of P_4 fix elements of P_1 and fix all elements of Q modulo P_1P_3 . It follows that

(63)
$$\theta_4(\alpha) \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ f(\alpha) & 1 & g(\alpha) \\ h(\alpha) & 0 & 1 \end{bmatrix},$$

where f, g, h are functions from F_q into itself, and the 1 in the last row follows from the fact that $\theta_4(\alpha)^p = 1$.

Using (56), (63), and the fact that $c_2^2 = t$ inverts P_3 , we compute that

$$c_2\theta_2(1)$$
: $\theta_3(\alpha) \to \theta_1(f(-\alpha))\theta_3(g(-\alpha))\theta_4(\alpha)$, $\theta_4(\alpha) \to \theta_3(-\alpha)$.

Then we compute, using (63), that

$$(c_2\theta_2(1))^3$$
: $\theta_4(\alpha) \rightarrow \theta_1(k(\alpha))\theta_3(r(\alpha))\theta_4(g(\alpha))$,

where $k(\alpha) = f(\alpha) + f(-g(\alpha)) + h(-g(\alpha))\alpha$, $r(\alpha) = g(-g(\alpha)) + \alpha$. But, computation using (30) and (55) shows that

$$(c_2\theta_2(1))^3 = 1.$$

It follows that $k(\alpha) = r(\alpha) = 0$, and, in particular, that $g(\alpha) = \alpha$.

In the case $\delta = -1$, comparison with Lemma 4.10 now shows that $\theta_4(\alpha)$ belongs to the coset $\eta(\mu\alpha)$ of U/Q. Then Lemma 4.10 determines the action of $\theta_4(\alpha)$ on Q, and we obtain the relations stated in the lemma.

Now let $\delta = 1$. We have already shown that $\theta_4(\alpha)h_1 = h_1\theta_4(\epsilon\alpha)$. Taking the matrices of the corresponding linear transformations on Q, by Lemma 4.4 and (63), we find that

$$f(\varepsilon\alpha) = \varepsilon^2 f(\alpha).$$

Since ε is a generator of the multiplicative group of F_q , this implies that

$$f(\beta\alpha) = \beta^2 f(\alpha),$$

for $\beta \neq 0$. Setting $\alpha = 1$ and then replacing β by α , we have $f(\alpha) = m\alpha^2$, for $\alpha \neq 0$, where m = f(1). This formula holds also for $\alpha = 0$, since $\theta_4(0) = 1$.

The relation $\theta_4(1)\theta_4(\alpha) = \theta_4(1+\alpha)$ implies that

$$f(1+\alpha) = f(1) + f(\alpha) + h(\alpha),$$

so that we have $h(\alpha) = 2m\alpha$.

To determine m, we compute in C(t) that

$$(tw\theta_1(1)\theta_2(-1))^3 = 1.$$

Transforming by yc_2 , we obtain the equation

$$(tuv\theta_4(1))^3 = 1.$$

We calculate that

$$tuv\theta_4(1) \rightarrow \begin{bmatrix} -m & -1 & -1 \\ -1 & 0 & 0 \\ -2m & 0 & -1 \end{bmatrix}$$

Cubing, we find that m = -1, so that

$$heta_4(lpha)
ightarrow egin{bmatrix} 1 & 0 & 0 \ -lpha^2 & 1 & lpha \ -2lpha & 0 & 1 \end{bmatrix},$$

and we have determined the action of P_4 on Q. This gives the relations of the lemma.

It follows from our relations that $Z(U)=P_1$. Hence $N(U) \le N(P_1)$, so that Lemma 4.8 implies that N(U)=UH. Since U is a Sylow p-subgroup of UH, it follows that U is a Sylow p-subgroup of G. This completes the proof of Lemma 4.11.

5. The (BN)-pair. The action of u on $Q = P_1P_2P_3$ and the action of c_2 on $V = P_1P_3P_4$ are given as follows.

LEMMA 5.1.

$$u: \theta_1(\alpha) \to \theta_2(\alpha), \qquad \theta_2(\alpha) \to \theta_1(\alpha), \qquad \theta_3(\alpha) \to \theta_3(-\alpha),$$
 $c_2: \theta_1(\alpha) \to \theta_1(\alpha), \qquad \theta_3(\alpha) \to \theta_4(\alpha), \qquad \theta_4(\alpha) \to \theta_3(-\alpha).$

Proof. The action of u on P_1P_2 is given by the structure of C(t). Since u inverts D_2 , $u=u^y$ also inverts $D_2^y=P_3$.

By the structure of C(t), c_2 centralizes P_1 ; and c_2 transforms $\theta_3(\alpha)$ into $\theta_4(\alpha)$ by the definition (56). Finally, $c_2^2 = t$ inverts P_3 , so that c_2 transforms $\theta_4(\alpha)$ into $\theta_3(-\alpha)$. This proves the lemma.

The normalizer of H in C(t) is the group

$$(64) N = \langle H, u, c_2 \rangle.$$

This is in fact the normalizer of H in G, since $\langle t \rangle$ is characteristic in H, being the group of $\frac{1}{2}(q-1)$ th powers of elements of H.

LEMMA 5.2. The structure of $N = \langle H, u, c_2 \rangle$ is determined by the relations

$$h_1^{(q-1)/2} = h_2^{(q-1)/2} = c_2^2 = t, t^2 = u^2 = 1,$$

 $[h_1, h_2] = [h_1, c_2] = 1, h_1^u = h_2, h_2^{c_2} = h_2^{-1}, (uc_2)^4 = 1.$

The group W = N/H is dihedral of order 8.

Proof. This is all computation within C(t). The group W = N/H is dihedral of order 8 because of the relations $u^2 = 1$, $c_2^2 \in H$, $(uc_2)^4 = 1$.

Now set

$$r_1 = uH$$
, $r_2 = c_2H$.

Then r_1 and r_2 are involutions generating N/H = W. The elements of W, written in shortest possible form in terms of r_1 and r_2 , are

1,
$$r_1$$
, r_2 , r_1r_2 , r_2r_1 , $r_1r_2r_1$, $r_2r_1r_2$, $r_1r_2r_1r_2$.

For σ in W, let $\lambda(\sigma)$ be the number of factors r_i when σ is expressed in the shortest form as above. Set $\omega(r_1)=u$, $\omega(r_2)=c_2$, and, for $\sigma=r_{i_1}\cdots r_{i_k}$, set $\omega(\sigma)=\omega(r_{i_1})\cdots\omega(r_{i_k})$. Then $\sigma=\omega(\sigma)H$. If K is any subgroup containing H, we write σK and $K\sigma$ for the

cosets $\omega(\sigma)K$ and $K\omega(\sigma)$. If K is any subgroup normalized by H, we write K^{σ} for $K^{\omega(\sigma)}$. We set

$$(65) B = UH.$$

Clearly $B \cap N = H$.

LEMMA 5.3. Let $G_i = B \cup Br_iB$, i = 1, 2. Then G_1 and G_2 are subgroups of G.

Proof. Since $G_iG_i = B \cup Br_iB \cup Br_iBr_iB$ and $r_i^2 = 1$, it is enough to prove that

$$B^{r_i} \subseteq B \cup Br_iB$$
.

Since $u = \omega(r_1)$ normalizes $P_1 P_2 P_3 H$ and $c_2 = \omega(r_2)$ normalizes $P_1 P_3 P_4 H$, it is enough to show that

$$P_{4^1}^r \subseteq B \cup Br_1B, \quad P_{2^2}^r \subseteq B \cup Br_2B.$$

As is well known, e.g. [3, p. 34], $L_2 \approx SL_2(q)$ has the Bruhat decomposition

$$L_2 = B_2 \cup B_2 c_2 B_2,$$

where $B_2 = P_2 \langle h_2 \rangle \leq B$. Hence $P_2^{r_2} = P_2^{c_2} \leq L_2 \leq B \cup Br_2 B$.

For x in $SL_2(q)$, set

$$\bar{x} = f^{-1}xf$$
, where $f = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

Then

$$A_1 = \{x_1 \bar{x}_2 \mid x \in \mathrm{SL}_2(q)\}$$

is a subgroup of C(t) isomorphic with $PSL_2(q)$, an isomorphism being provided by the correspondence associating $x_1\bar{x}_2$ with the element of $PSL_2(q)$ represented by the matrix x. The matrices

$$\begin{bmatrix} 1 & 0 \\ \alpha & 1 \end{bmatrix}$$

of $SL_2(q)$ give a Sylow p-subgroup D_2 of A_1 , whose normalizer in A_1 is

$$B_1 = D_2 \langle h_1 h_2 \rangle$$
,

since $\bar{h}_2 = h_2$. Since $\bar{c}_2 = tc_2$, the Bruhat decomposition of $SL_2(q)$ leads to the decomposition

$$A_1 = B_1 \cup B_1 t c_1 c_2 B_1.$$

In particular, $D_2^{tc_1c_2} \subseteq B_1 \cup B_1tc_1c_2B_1$.

Now, $D_2^{yc_2} = P_4$, $(h_1h_2)^{yc_2} = h_1h_2^{-1}$, and $(tc_1c_2)^{yc_2} = tuv$ or u according as $\delta = 1$ or $\delta = -1$. If $\delta = 1$, $tv \in H$ so that $tuv \equiv u \pmod{H}$. Then,

$$P_4^{r_1} \subseteq (B_1 \cup B_1 t c_1 c_2 B_1)^{y c_2} \subseteq B \cup Br_1 B_1$$

since $B_1^{yc_2} = P_4 \langle h_1 h_2^{-1} \rangle \leq B$. This proves the lemma.

LEMMA 5.4. If $\sigma \in W$, i = 1 or 2, and $\lambda(r_i \sigma) \ge \lambda(\sigma)$, then $r_i B \sigma \subseteq B r_i \sigma B$.

Proof. Since u normalizes $P_1P_2P_3H$ and c_2 normalizes $P_1P_3P_4H$, it is enough to show that

$$uP_4\omega(\sigma) \subseteq u\omega(\sigma)B$$
 if $\lambda(r_1\sigma) \ge \lambda(\sigma)$,
 $c_2P_2\omega(\sigma) \subseteq c_2\omega(\sigma)B$ if $\lambda(r_2\sigma) \ge \lambda(\sigma)$.

There are eight cases to examine, all easily verified by using Lemma 5.1. For example, when i=1, $\sigma=r_2r_1$,

$$uP_4c_2u = uc_2P_3u = uc_2uP_3$$

Seven more such verifications complete the proof of the lemma.

LEMMA 5.5. The set $G_0 = BNB$ is a subgroup of G, and G_0 is the disjoint union of the eight double cosets $B\sigma B$, $\sigma \in W$.

Proof. This follows from Lemmas 5.3 and 5.4 by a theorem of Tits [16].

LEMMA 5.6. $U \cap U^{r_1 r_2 r_1 r_2} = \{1\}.$

Proof. Let $m = \omega(r_1r_2r_1r_2) = (uc_2)^2 = c_1c_2$, and set

$$D = U \cap U^m$$

Since m normalizes H, and H normalizes U,

$$D^{H} \subseteq U^{H} \cap U^{mH} = U^{H} \cap U^{Hm} = U \cap U^{m} = D,$$

so that H normalizes D. Since $C_U(t) = R$ and $R \cap R^m = \{1\}$,

$$C_{D}(t) = \{1\}.$$

Hence t inverts D. The subgroup of Q inverted by t is P_3 , so that

$$D \cap Q \leq P_3$$
.

Also, $C_U(tu) = R^y$ and $R^y \cap R^{ym} = R^y \cap R^{my} = (R \cap R^m)^y = \{1\}$, since ym = my if $\delta = -1$, and ym = vmy if $\delta = 1$. Thus,

$$C_D(tu) = \{1\}.$$

Since $P_3 \leq C(tu)$, we have $D \cap Q = \{1\}$.

Let $d \in D$. Then d = mn, where $m \in P_4$, $n \in Q$. Since h_1h_2 centralizes P_4 and normalizes both D and Q, we see that

$$[n, h_1h_2] = [d, h_1h_2] \in D \cap Q$$

so that h_1h_2 commutes with n. Since h_1h_2 acts without fixed point on Q, n=1. Thus, $D \le P_4$. Since H acts irreducibly on P_4 , either $D = \{1\}$ or $D = P_4$.

Since $m^2 = 1$, m normalizes D. If $D \neq \{1\}$, then m induces an automorphism of P_4 , say

$$m: \theta_4(\alpha) \to \theta_4(f(\alpha)).$$

Now, $h_1m = mh_1^{-1}$, and we know the action of $\langle h_1 \rangle$ on P_4 , by Lemma 4.11. This implies that

$$f(\varepsilon\alpha) = \varepsilon^{-1}f(\alpha).$$

Since ε generates the multiplicative group of F_a ,

$$f(\beta\alpha) = \beta^{-1}f(\alpha)$$

for $\beta \neq 0$, so that $f(\beta) = \gamma \beta^{-1}$, where $\gamma = f(1)$. Since *m* induces an automorphism of P_4 , we have $\gamma \neq 0$, and

$$f(\alpha + \beta) = f(\alpha) + f(\beta).$$

Hence, whenever α , β , $\alpha + \beta$ are all nonzero,

$$(\alpha+\beta)^{-1} = \alpha^{-1}+\beta^{-1}$$
.

Take $\beta = 1$ and clear fractions. Then every nonzero element α of F_q different from -1 must satisfy the equation

$$\alpha^2 + \alpha + 1 = 0.$$

This is impossible since q > 4. Hence $D = \{1\}$ and we have proved the lemma.

LEMMA 5.7. For each element σ of W,

$$U = U_{\sigma}U'_{\sigma}, \qquad \omega(\sigma)U_{\sigma}\omega(\sigma)^{-1} \leq U^{r_1r_2r_1r_2}, \qquad \omega(\sigma)U'_{\sigma}\omega(\sigma)^{-1} \leq U,$$

where U_{σ} and U'_{σ} are subgroups of U given by the table

σ	1	r_1	<i>r</i> ₂	r_1r_2	r_2r_1	$r_1r_2r_1$	$r_2r_1r_2$	$r_1r_2r_1r_2$
U_{σ}	{1}	P_4	P_2	P_2P_3	P_1P_4	$P_1P_3P_4$	$P_1P_2P_3$	U
U_{σ}'	U	$P_1P_2P_3$	$P_1P_3P_4$	P_1P_4	P_2P_3	P_2	P_4	{1}

Proof. This is straightforward computation, using Lemma 5.1. For example, $(P_2P_3)^{r_1r_2} = (P_1P_3)^{r_2} = P_1P_4$, so that

$$\omega(r_1r_2)P_1P_4\omega(r_1r_2)^{-1} = P_2P_3 \leq U,$$

and

$$\omega(r_1r_2)P_2P_3\omega(r_1r_2)^{-1} = \omega(r_1r_2r_1r_2)P_1P_4\omega(r_1r_2r_1r_2)^{-1}$$
$$= P_1P_1^{r_1r_2r_1r_2} \le U^{r_1r_2r_1r_2}.$$

LEMMA 5.8. Every element of G_0 has a unique expression in the form $b\omega(\sigma)x$, where $b \in B$, $\sigma \in W$, $x \in U_{\sigma}$. The order of G_0 is equal to the order of $PSp_4(q)$.

Proof. By using Lemmas 5.6, 5.7, we prove the existence and uniqueness of the "normal form" in the usual way [3, p. 42]. It follows that $|B\sigma B| = |B| |U_{\sigma}|$, so that

$$|G_0| = |B| \sum_{\sigma \in W} |U_\sigma| = \frac{1}{2} q^4 (q-1)^2 (1+q+q+q^2+q^2+q^3+q^3+q^4)$$
$$= \frac{1}{2} q^4 (q-1)^2 (q+1)^2 (q^2+1) = |PSp_4(q)|.$$

This proves the lemma.

LEMMA 5.9. G_0 is isomorphic with $PSp_4(q)$.

Proof. Given two elements of G_0 in normal form, the normal form of their product is uniquely determined, by Lemmas 4.11, 5.1, 5.2, 5.3, 5.4, 5.7 and 5.8 (cf [12, §8]). Thus the multiplication table of G_0 is uniquely determined. Since $PSp_4(q)$ satisfies the hypothesis of the theorem and the condition (10), we see that $PSp_4(q)$ has a subgroup isomorphic with G_0 . By the equality of the orders, G_0 is isomorphic with $PSp_4(q)$.

An alternative method of proving this lemma which does not require the structure of UH and the action of u and c_2 on Q and V to be known with the exactness of Lemmas 4.11 and 5.1 can be given, by using a theorem of Higman. By Lemmas 5.3, 5.4,

$$G_2r_1G_2 = Br_1B \cup Br_2r_1B \cup Br_1r_2B \cup Br_2r_1r_2B,$$

$$G_2r_1r_2r_1G_2 = Br_1r_2r_1B \cup Br_1r_2r_1r_2B,$$

so that G_0 is decomposed into 3 double cosets

$$G_0 = G_2 \cup G_2 r_1 G_2 \cup G_2 r_1 r_2 r_1 G_2$$
.

This means that the transitive permutation representation of G_0 on the right cosets of G_2 has rank 3 in the sense of Higman [9], i.e. G_2 has three orbits. These orbits have lengths

1,
$$|G_2r_1G_2|/|G_2| = q(q+1)$$
, $|G_2r_1r_2r_1G_2|/|G_2| = q^3$.

If the kernel of the permutation representation of G_0 is K, suppose that $K \cap P_1 > \{1\}$. Since H acts irreducibly on P_1 , $K \ge P_1$. Hence $K \ge P_1^u = P_2$, $K \ge D_2$. Hence $K \ge D_2^u = P_3$, and $K \ge P_3^{c_2} = P_4$. Thus $K \ge U$. By Lemma 4.11 and the Frattini argument, $G_0 = KH \le G_2$, a contradiction. Thus P_1 is represented faithfully. From Lemma 5.8, every right coset of G_2 in $G_2r_1G_2$ has the form G_2r_1x or $G_2r_1r_2x$, where $x \in U$. Since P_1 is in the center of U and lies in U'_{r_1} and $U'_{r_1r_2}$, it follows that every element of P_1 fixes every right coset of G_2 in $G_2r_1G_2$. By [9, Theorem 2, p. 154], G_0 has $PSp_4(q)$ as a chief factor, and so G_0 is isomorphic with $PSp_4(q)$, by equality of orders.

LEMMA 5.10. $G_0 = G$.

Proof. Since $PSp_4(q)$ satisfies the hypothesis of the theorem, and the condition (10), G_0 possesses all the properties found for G. In particular, G_0 has two classes of involutions, and the centralizer in G_0 of an involution has order $q^2(q^2-1)^2$ or $q(q^2-1)(q-\delta)$, depending on whether or not it lies in the center of a Sylow 2-subgroup of G_0 . Since G_0 contains t and t0, involutions of t1 and t2, the classes of involutions in t3 must be

$$K_1' = K_1 \cap G_0, \qquad K_2' = K_2 \cap G_0.$$

Since Sylow 2-subgroups of G_0 are Sylow 2-subgroups of G, K'_2 must consist of the involutions of G_0 which do not lie in the center of a Sylow 2-subgroup, so that K'_1 must consist of those which do. If x is any involution of G_0 , we see now that $C_{G_0}(x) = C(x)$. Since G has two classes of involutions, G_0 must contain all the involutions of G [14, Lemma 1, p. 144]. In particular, $K'_1 = K_1$, so that

$$|G_0| = |K_1'| |C_{G_0}(t)| = |K_1| |C_G(t)| = |G|.$$

Thus, $G_0 = G$.

This completes the proof of the theorem.

REFERENCES

- 1. R. Brauer, Some applications of the theory of blocks of characters of finite groups. II, J. Algebra 1 (1964), 307-334.
- 2. R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. 42 (1941), 556-590.
 - 3. C. Chevalley, Sur certains groupes simples, Tôhoku Math. J. (2) 7 (1955), 14-66.
 - 4. L. E. Dickson, Linear groups, Dover, New York, 1958.
 - 5. J. Dieudonné, La géométrie des groupes classiques, Springer, Berlin, 1955.
 - 6. G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403-420.
- 7. D. Gorenstein and J. H. Walter, On finite groups with dihedral Sylow 2-subgroups, Illinois J. Math. 6 (1962), 553-593.
 - 8. M. Hall, The theory of groups, Macmillan, New York, 1959.
 - 9. D. G. Higman, Finite permutation groups of rank 3, Math. Z. 86 (1964), 145-156.
- 10. Z. Janko, A characterization of the finite simple group PSp₄ (3), Canad. J. Math. 19 (1967), 872-894.
 - 11. K.-W. Phan, On a characterization of $L_4(q)$, q odd. I, J. Algebra. (to appear).
 - 12. M. Suzuki, On characterizations of linear groups. V (to appear).
 - 13. ——, On characterizations of linear groups. VI (to appear).
 - 14. ——, Two characteristic properties of (ZT)-groups, Osaka Math. J. 15 (1963), 143-150.
- 15. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437.
- 16. J. Tits, Théorème de Bruhat et sous-groupes paraboliques, C. R. Acad. Sci. Paris 254 (1962), 2910-2912.
- 17. W. J. Wong, A characterization of the alternating group of degree 8, Proc. London Math. Soc. (3) 13 (1963), 359-383.

University of Notre Dame, Notre Dame, Indiana